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Abstract—To date, several methods and tools for detecting 

source code and design anomalies have been developed. While 
each method focuses on identifying certain classes of source 
code anomalies that potentially relate to technical debt (TD), 
the overlaps and gaps among these classes and TD have not 
been rigorously demonstrated. We propose to construct a 
seminal technical debt landscape as a way to visualize and 
organize research on the subject. 
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I. INTRODUCTION 

The technical debt (TD) metaphor [22], created and 
initially driven by the agile community, is often discussed in 
blogs and other development forums. However, work aiming 
at putting the metaphor into a scientific context is only 
beginning. The first attempts to formalize TD into a 
scientific framework have been made by the authors and 
other participants in the MTD workshops [1]. These 
workshops, with participants from both industry and research 
communities, have confirmed that many practitioners are 
lacking a generally applicable body of knowledge on how 
TD can be organized, visualized, identified, and managed in 
their software projects. Thus, many developers are trying to 
implement their own customized TD solutions.  

Herein, we propose work that aims to facilitate this 
process, by providing practitioners and researchers with a 
seminal landscape of existing approaches for organizing, 
visualizing, and identifying one important form of TD, i.e. 
debt resulting from anomalies in the source code. This initial 
landscape serves as an invitation for researchers to contribute 
to its further development. As the landscape evolves, we 
expect that tools and processes will become better able to 
cover existing gaps and handle overlaps in decision making 
abilities, TD management, payoff techniques, and the inter-
relationships that exist between them. Gaps are types of 
technical debt that are important to practitioners but cannot 
be detected by any existing technique or tool solution. This 
will address the shortcomings of the current state of the art in 
this area, namely that the overlaps and gaps between the 
methods are not known, that the relationship between 

specific source code anomalies and TD has not been 
demonstrated, and that the use of techniques for organizing, 
visualizing, identifying and managing TD have not been 
provided in a form that is easily integrated into software 
practice. 

 

II. RESEARCH APPROACH 

In order to investigate the relations among various code 
and design anomaly analysis techniques, as well as their 
ability to find and diagnose TD, we have formulated two 
main research questions: 

 
1. What are the overlaps and gaps among existing 

techniques? 
2. To what extent do existing techniques help in 

identifying TD? 
 
To address these questions, we propose a two-staged 

iterative research methodology, as illustrated in Fig. 1. 
Through a diverse set of empirical studies we can build 
support for understanding the landscape of TD with respect 
to the commonalities and differences between different 
existing techniques and tools, and which types of TD are 
worth managing by practitioners. In the first stage the focus 
is on identifying and characterizing the types of TD, 
resulting in a “draft” of the TD landscape. This information 
is extracted from: 

i. Existing techniques and tools. For example, the 
existing approaches described in section III constitute 
the techniques and tools that the authors have worked 
with thus far. Current unpublished work [2], 
summarized later in this paper, suggests little overlap 
among different techniques. However, there are other 
such techniques described in the literature, and we 
expect that the proposed landscape will help serve as a 
way of framing and organizing further research on the 
subject. 
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ii. War stories reported by practitioners. Qualitative 
analysis of war stories (a particular interview 
technique meant to yield illustrative examples [3]) 
provides insight into the types of TD which 
practitioners struggle with most (and therefore are 
important to manage). Some of our colleagues have 
already collected a significant number of such war 
stories, which we and others should analyze in an 
effort to contribute to the TD landscape.  

Stage 2 of our proposed approach involves refining and 
validating the draft landscape through targeted and 
coordinated empirical studies, resulting in a more accurate 
and complete TD landscape. We envision the following 
types of studies that would contribute to stage 2: 
 Design 1: Direct comparisons of TD identification 

techniques: This design compares the output of two or 
more source code analysis techniques (e.g. those 
described in section III) applied to the same software 
system, to understand differences and commonalities 
between the outputs of these techniques. Variations of 
this design will include open source and commercial 
software systems and different combinations of 
techniques. Our unpublished study, described briefly in 
section IV, implements this design by comparing the 
output of four different techniques in an open-source 
software context, showing that the problems each 
detects are different but with some overlaps.  

 Design 2: Evaluating TD identification techniques 
for identifying real debt: Existing TD identification 
techniques do, in fact, detect various forms of 

anomalies in the source code. It is not always clear, 
however, that these anomalies constitute TD, i.e. that 
they result in future maintenance problems if not 
corrected. This study design characterizes the 
usefulness of a technique to identify and quantify TD 
properties. This case study design would begin with the 
application of one of the TD detection techniques, 
followed by a focus group involving the developers of 
the code that was analyzed. The focus group 
participants will be asked to comment on how they 
would use the output of the source code analysis to 
manage TD, including how they could quantify the 
debt, how they would decide when (or if) to pay off the 
debt, and what the consequences of the debt are likely 
to be. An example of a study of this type is described in 
[24]. Studies following this design will help us to refine 
techniques for quantifying different types of debt.  

 Design 3: Evaluating the relationship between types 
of TD and future maintenance: Experiments 
following this design would test the negative effects of 
TD on software quality using various indicators, e.g. 
introducing elevated defect rates, lowered 
maintainability, and higher cost of future changes. The 
basic design is to first produce two versions of a 
software module (e.g. a class or set of related classes), a 
“clean” version and a version that contains some type 
of code-based TD (e.g. grime, a code smell, etc.). Then 
subjects will be divided into two groups and both 
groups will be given the same maintenance task. One 
group will perform the maintenance task on the “clean” 
version and the other will modify the version with debt. 
The maintenance effort and resulting quality will be 
compared between the two groups. These controlled 

 
 

Figure 1. Technical Debt Landscape 
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designs will provide insight into which kinds and 
amounts of debt actually result in lower maintainability.  

  We expect that contributions from the research 
community in the form of these study designs and others, 
will help refine and validate our draft landscape, as depicted 
in stage 2 of Fig. 1.  

III. EXISTING APPROACHES 

There are a number of techniques and tools that could 
potentially be useful in the identification of source code-
based TD, even if many of them were not developed with 
that aim in mind. We will not attempt to list them all here. 
However, very few, if any, have been validated with respect 
to their contribution to TD identification. To that end, we 
have begun the work of building the TD landscape by 
examining and comparing four specific techniques, described 
below in terms of their basic concepts and related work. 

Modularity Violations (tool: CLIO) [4]. During 
software evolution, if two components always change 
together to accommodate modification requests but they 
belong to two separate modules that are designed to evolve 
independently, then there is a discrepancy. Such 
discrepancies can indicate TD as they may be caused by side 
effects of a quick and dirty implementation, or requirements 
may have changed such that the original designed 
architecture could not easily adapt. When such discrepancies 
exist, the software can deviate from its designed modular 
structure, which is called a modularity violation. Wong et al. 
[4] have demonstrated the feasibility and utility of this 
approach. In their experiment using Hadoop, they identified 
231 modularity violations from 490 modification requests, of 
which 152 (65%) violations were conservatively confirmed 
by the fact that they were either indeed addressed in later 
versions, or were recognized as problems in the developers’ 
subsequent comments.  

Design Patterns and Grime Buildup. Design patterns 
are popular for a number of reasons, including but not 
limited to claims of easier maintainability and flexibility of 
designs, reduced number of defects and faults [5], and 
improved architectural designs. Software designs decay as 
systems, uses, and operational environments evolve, and 
decay can involve design patterns.  Classes that participate in 
design pattern realizations accumulate grime – non-pattern-
related code. Design pattern realizations can also rot, when 
changes break the structural or functional integrity of a 
design pattern. Both grime and rot represent forms of TD, in 
that the effort to keep the patterns cleanly instantiated has 
been deferred.  In prior work Izurieta and Bieman [6, 22] 
introduced the notion of design pattern grime and performed 
a study of the effects of decay on three open-source systems, 
JRefactory, ArgoUML and eXist. They studied pattern 
realizations and found that coupling increased and 
namespace organization became more complex due to design 
pattern grime, but they did not find changes that “break” the 
pattern (design pattern rot). Izurieta and Bieman [7] also 
examined the effects of design pattern grime on the 

testability of JRefactory, a handful of patterns were 
examined, and they found that there are at least two potential 
mechanisms that can impact testability: 1) the appearance of 
design anti-patterns [8] and 2) the increases in relationships 
(associations, realizations, and dependencies) that in turn 
increase test requirements.  They also found that the majority 
of grime buildup is attributable to increases in coupling.   

Code Smells (tool: CodeVizard). The concept of code 
smells (aka bad smells) was first introduced by Fowler [9] 
and describes choices in object-oriented systems that do not 
comply with widely accepted principles of good-object 
oriented design (e.g., information hiding, encapsulation, use 
of inheritance). Code smells indicate where effort to improve 
the design has been deferred, hence indicate TD, and can be 
roughly classified into identity, collaboration, and 
classification disharmonies [10]. Automatic approaches 
(detection strategies [11]) have been developed to identify 
code smells. Schumacher et al. [12] focused on evaluating 
these automatic approaches with respect to their precision 
and recall, and others [13] [14] have evaluated the 
relationship between code smells (e.g., god classes) and the 
defect and change proneness of software components. This 
work showed that automatic classifiers for god classes work 
with high recall and precision when studied in industrial 
environments. Further, in these environments, god classes 
were up to 13 times more likely affected by defects and up to 
seven times more change prone than their non-smelly 
counterparts.  

ASA issues (tool: FindBugs). Automatic static analysis 
(ASA) tools analyze source or compiled code looking for 
violations of recommended programming practices 
(“issues”) that might cause faults or might degrade some 
dimensions of software quality (e.g., maintainability, 
efficiency). Some ASA issues can indicate TD as they are 
good candidates for removal through refactoring to avoid 
future problems. In previous work Vetró et al. [15] [16] 
analyzed the issues detected by FindBugs [17] on two pools 
of similar small programs (85 and 301 programs 
respectively), each of them developed by a different student, 
in order to verify which FindBugs issues were related to real 
defects in the source code. By analyzing the changes and test 
failures in both studies they observed that a small percentage 
of issues were related to known defects in the code. Some of 
the issues identified as good/bad defect detectors by the 
authors in these studies were also found in similar studies 
with FindBugs, both in industry [18] and open source 
software [19]. Similar studies have also been conducted with 
other tools [20] [21] and the overall finding is: a small set of 
ASA issues is related to defects in the software, but the set 
depends on the context and type of the software. 

IV. HADOOP CASE STUDY 

Our strategy of investigating the research questions 
proposed in Section II is to apply different TD identification 
technologies to the same set of subject systems. Each 
technique reports a set of files to be problematic. We then 
study how these results overlap and what the gaps are. We 
also study the relation between these detected problematic 
files and quality issues, such as the existence of bugs. The 
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purpose is to investigate which techniques can detect 
problems that most likely lead to quality issues. These 
issues, presumably, contain more expensive TD, and should 
be taken care of sooner than others.  

Our unpublished case study [2] using Hadoop produced 
three main findings: a) different TD techniques point to 
different classes and therefore to different problems; b) 
dispersed coupling, god classes, modularity violations and 
multithread correctness issues are located in classes with 
higher defect-proneness; and c) modularity violations are 
strongly associated with change proneness. These findings 
contribute to building an initial picture of the TD landscape. 
The initial result showed that these TD techniques are 
loosely overlapping and only a subset of them is strongly 
associated with defect and change proneness. This indicates 
that, in practice, multiple TD indicators should be used. 

V. FUTURE WORK 

In addition to comparing existing techniques for their 
overlaps, we will also investigate the gaps between existing 
techniques and TD identification. Gaps are types of TD that 
are important to practitioners but cannot be detected by any 
existing technique or tool solution. Research is needed to 
study or find techniques able to fill those gaps. We will also 
investigate quality factors other than defect and change 
proneness, such as productivity and maintenance difficulties. 
We envision a future when designers can use a well-
developed, well-validated TD landscape to select and 
combine the results from different techniques to detect the 
TD items with most significance and impact, and further 
associate values and costs to make well-informed decisions 
on refactoring. 
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