
Preemptive Management of Model Driven Technical Debt 
for Improving Software Quality 

Clemente Izurieta 
Department of Computer Science 
Software Engineering Laboratory 
Montana State University, USA 

1-406-994-3720 
clemente.izurieta@cs.montana.edu 

Gonzalo Rojas 
Department of Computer Science 

Faculty of Engineering 
University of Concepción, Chile 

56-41-220-4305 
gonzalorojas@inf.udec.cl 

Isaac Griffith 
Department of Computer Science 
Software Engineering Laboratory 
Montana State University, USA 

1-406-994-4780 
isaac.griffith@msu.montana.edu 

 
 

ABSTRACT 
Technical debt has been the subject of numerous studies over the 
last few years. To date, most of the research has concentrated on 
management (detection, quantification, and decision making) 
approaches –most performed at code and implementation levels 
through various static analysis tools. However, if practitioners are 
to adopt model driven techniques, then the management of 
technical debt also requires that we address this problem during 
the specification and architectural phases. This position paper 
discusses several questions that need to be addressed in order to 
improve the quality of software architecture by exploring the 
management of technical debt during modeling, and suggests 
various lines of research that are worthwhile subjects for further 
investigation. 

Categories and Subject Descriptors 

D.2.10 [Software Engineering]: Design – Design Concepts, 
Object-oriented design methods; D.2.11 [Software Engineering]: 
Software Architectures – patterns. 

General Terms 
Measurement; Design; Experimentation. 

Keywords 
Technical debt; model driven development; software quality; 
software maintenance; model and architectural quality. 

1. INTRODUCTION 
Traditional engineering has always used models to capture 
simplified abstractions of behavior and structure in the setting of 
their domains before building their products. Models are abstract, 
yet they can be precise, predictive, comprehensive and cheap [28]. 
Software development projects are different. Attempts by the 
software modeling community have fallen short of their goals and 
expectations to gain meaningful adoption by practicing engineers. 

Practitioners in industry have not embraced Model Driven 
Development (MDD) [6], and when adopted, it is only as a 
distinct activity during design, and certainly not treated as a first 
class citizen during the Model Driven Engineering (MDE) process 
[8]. Software models and their respective implementations have 
exhibited large semantic gaps, and although MDD tools are 
increasingly improving their usability and features, most of them 
lack validation, are cumbersome to use, and changes that occur in 
either the model or the code are not reflected in their counterparts 
–traceability is too expensive for practitioners. These, among 
other problems, have contributed to relegating modeling as a 
documentation exercise at best. 
 
Our position is that we must enhance the value added by MDE. 
One method to accomplish this goal is by recognizing 
disharmonies early in the architecture of a design and generating 
clean implementations early. By characterizing and removing 
deficiencies before executable components are generated we add 
value. By using Technical Debt (TD) [4] as an overarching 
metaphor that captures quality deficiency concepts we can 
abstract debts to models. To date however, refactoring efforts 
defined by Fowler [7], and TD studies have focused on detection, 
measurement, and analysis techniques on source code. 
Preliminary definitions and taxonomies of TD are based on 
decisions made at implementation phases. However, an important 
part of the implemented code is obtained from implementation-
independent models through a mapping process, and to our 
knowledge there is no body of work that addresses the detection, 
quantification, and decision making of TD during the modeling 
and mapping activities of the specification phase. By proactively 
reducing TD at the architectural modeling level through improved 
MDE tools, we can significantly enhance adoption of MDD 
because we are addressing potential disharmonies early. We posit 
that practitioners do not perceive the added value that conceptual 
models provide, which contributes to a lack of adoption of 
conceptual modeling as a viable method for improving software 
quality. Developers thus sacrifice software quality (whether 
intentionally or unintentionally) due to not adopting conceptual 
modeling techniques. Our hypothesis is that TD-aware modeling 
is a viable tool that can help preserve software quality allowing 
practitioners to manage debt in the early stages of the software 
lifecycle, independent of programing languages. It is thus critical 
for us to seek answers through quantifiable means to three 
foundational activities in the software specification phase.  
 
    Q1. Do MDD modeling and mapping (model-to-code 
transformation) processes introduce additional debts to the code? 
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    Q2. Does the evolution of conceptual models at the 
architectural level introduce additional debts? And 
    Q3. Which debts need to be removed? 
 
If the answer to either Q1 or Q2 is positive, then our modeling 
efforts could be contributing to inadvertent TD [32] – “… whilst 
this form of debt is not entered into consciously, it still accrues 
interest and needs to be repaid”. By using the TD metaphor, we 
can develop taxonomies and measurable quantitative methods that 
can reduce the principal and interest (cf. section 2) in models 
before mapping such models to executable code. TD principal and 
interest metrics as well as treating intentional debts as first class 
citizens will help provide recommendations that address the 
concerns asked by Q3 and allow for prioritization of debt removal 
at the modeling level. Not all debt is strategic debt [17], and some 
debt may not necessarily need to be proactively removed because 
it may either not have long-term consequences or because the 
mapping process from the MDD to the implementation phase may 
not reflect such disharmonies. This position paper is organized as 
follows: in section 2 we provide an abridged vernacular for MDD 
and TD, in section 3 we describe various approaches to important 
topics that must be addressed in order to manage TD in models 
towards helping researchers address the questions posed in the 
introduction. In section 4 we provide a discussion, in section 5 we 
describe related work, and conclude with future directions in 
section 6. 

2. DEFINITIONS 
i. Technical Debt Principal – Refers to the cost or effort 

(measured monetarily or in time units) necessary to restore a 
software artifact back to health. 

ii. Technical Debt Interest – A measure of the amount of extra 
work (above and beyond the normal maintenance effort) that 
is required to restore a software artifact back to health. 

iii. Technical Debt Interest Probability – Refers to a time 
sensitive measure. The probability that if the interest on a 
software artifact is left unpaid, then it will make it (and 
possibly other artifacts) more expensive to fix in the future. 

iv. Model Driven Development (MDD) – Refers to a 
development paradigm that uses models as the main artifact 
of design. It is important to distinguish MDD from Model 
Driven Architecture (MDA) which is a specific 
implementation of MDD by the Object Management Group 
(OMG [23] [24]). 

v. Model Driven Engineering (MDE) – Refers to an 
overarching process that subsumes MDD. MDE also refers to 
all other aspects of software engineering beyond modeling 
that use models. 

vi. Model Driven Technical Debt (MDTD) – Extends the 
preliminary definitions of TD by including TD introduced 
during model evolution and during the model-to-code 
mapping processes (cf. section 3.1). 

vii. Model Rot – Refers to the deterioration of the structural 
integrity of a model when compared to its meta-model. This 
is a corollary to design pattern rot [14]. 

viii. Model Grime – Refers to model disharmonies that do not 
break the structural integrity of the model, but contribute to 
the obfuscation of said model. This is a corollary to design 
pattern grime [14]. 

3. APPROACHES 
We pose that in order to address the questions introduced in 
section 1, the following methods could be followed. To find 
answers to Q1 researchers can use existing code based approaches 

that measure TD immediately following the MDD modeling and 
mapping phases, and to answer Q2 researchers can track the level 
of conformance that models have with respect to their meta-
models as a longitudinal function. Deviations can be addressed 
and model-refactored [18] before mapping to an executable 
model. Deviations from a meta-model come in two forms, model 
rot and model grime (defined in section 2). The answer to Q3 will 
come in the form of a prioritized list with associated principal and 
interest scores. We suggest four approaches borrowed from a 
proposal by Seaman [27]. 
 
Addressing Q1 will reveal new types of debts, or debts in an 
abstract form that will facilitate the development of a new 
taxonomy of TD observed at the architectural and modeling level, 
and an underlying theory for improving our understanding of 
Model Driven Technical Debt (MDTD), while addressing Q2, 
which relies on responses to Q1, aims to provide concrete 
empirical evidence that additional debts can be introduced through 
the evolution of a model and before the implementation phase 
thus increasing the TD principal and interest of the overall system. 
Addressing Q3 is necessary if we are to increase the adoption of 
MDE by practitioners. 

3.1 Model Driven Technical Debt (MDTD) 
While TD has been recognized as an intrinsic characteristic of 
software products, its original description (“not quite right code 
which we postpone making it right” [4]) has focused its detection 
and analysis on code. MDTD is a term borrowed from TD, but 
applied at a higher level of abstraction. We could be justified in 
saying “not quite right model which we postpone making it 
right.” As previously stated, current definitions and taxonomies of 
TD are based on decisions made at implementation phases 
without regard to code obtained from implementation-independent 
models that occur at the architectural level during the 
specification phase. By extending existing taxonomy to the 
architectural specification level, we can measure and remove 
technical debt before the implementation phase and thus 
improving the adoption of MDD. 
 
A conceptual model is an abstract representation of the concepts 
that compose one of the views of a software system. It facilitates 
the communication among developers and with stakeholders 
about the product being developed, abstracting the complexity of 
implementation details. From prescriptive plan-driven to agile 
proposals, different development methods make use of conceptual 
models, supporting the decision making about several aspects of 
the product and its development process. These modeling 
decisions are later reflected in code. For this reason, the 
possibility of adding TD at conceptual level is worthy of attention. 
 
Figure 1 describes a scenario of TD in conceptual models. In this 
scenario, a conceptual model evolves in time through different 
versions (exemplified in Figure 1, as Mv1 and Mv2). Each version 
may incur TD (TD1 and TD2, respectively). From one version to 
another, each evolution step is defined by a set of changes, some 
of them (Δ2) adding TD (TDx). As a result, the TD of Mv2 
corresponds to the accrual of debt from its preceding version (i.e. 
Mv1) and the newly introduced debt (TDx) as a consequence of 
Δ2. It is important to note that this example depicts a degenerate 
case where we assume that a linear function can capture the 
changes in technical debt in an evolutionary step. Our position is 
that this is significantly more complex, and that the understanding 
of a function is dependent on empirical validation and multiple 
factors, some of which will be more dominant than others. 



 
∆1

∆2

Mv2Mv1

TD1 + TDx = TD2TD1

X

 

Fig. 1. Technical Debt introduced in the modeling process 

Thus, in a generalized model, TD2 = f (TD1, Δ2). In order to fully 
specify this scenario, we need to: 

a) Describe and measure TD of a model version, 
b) Describe and measure TD introduced by modeling tasks, and 
c) Identify and describe these modeling tasks (changes) that 

introduce TD. 

Another aspect of MDTD concerns the effects of model mapping 
and its ripple effects on the implementation. Whether performed 
manually, automatically or semi-automatically, we must be aware 
that the model-to-code mapping process can add technical debt 
as well. Our concept of MDTD also includes the debt incurred by 
developers when adopting decisions with respect to which 
conceptual elements must be mapped onto code, which mapping 
rules should be applied, and the very implementation and 
execution of these rules. These decisions can greatly affect the 
future maintenance of the product, so the characterization of this 
model-to-code TD is necessary. Model-based code-generation 
tools can be especially useful for this purpose. 

Figure 2 illustrates the degenerate scenario (where we assume 
linearity) of model-to-code mapping process, in which the two 
versions of a conceptual model from Figure 1 generate (in a 
systematic or automatic way) corresponding pieces of code (Cv1 
and Cv2) at the implementation level. As a result of the mapping 
process, TD from source models (e.g., TD1) is likely to be 
transferred to code, but characterized at a lower abstraction level 
(TD1’). Furthermore, the mapping process itself may introduce an 
additional TD (TDm2c in Figure 2) to the resulting code. 

Conceptual Modeling 
Level

Implementation
Level

∆1

∆2

Mv2Mv1

TD1 + TDx = TD2TD1

X

Model-to-Code 
Mapping Process

Cv1 Cv2

TD1' + TDm2c TD2' + TDm2c  
Fig. 2. Technical Debt introduced by the model-to-code 

mapping process 

3.2 Characterization of MDTD 
Characterization of TD in models, just as in code, should be based 
in a definition of a model-based taxonomy of technical debt. 
Toward this goal, previous code-based taxonomies and detection 
techniques may be reused, by analyzing how said taxonomies can 
be raised to a conceptual modeling level. For example, the 
theoretical framework of TD proposed by Tom et al. [32] can be 

extended to include MDTD. Additionally, an initial TD landscape 
[15] could be extended to include MDD with a goal to further 
understand the gaps and overlaps that may exist at higher levels of 
abstraction. From another perspective, previous research on 
conceptual model quality [19], and concepts from model 
refactoring, such as model smells (redundancies, ambiguities, 
inconsistencies, incompleteness, non-adherence to design patterns, 
abuse of the modeling notation, etc.) [18] could serve as the basis 
for introducing a model-based taxonomy counterpart to existing 
code-based approaches to TD, and to establish a reference that can 
be used as a blueprint to which researchers can compare model 
versions and calculate debt.  The work performed by Giraldo et al. 
[11] used Moody’s rule definitions [20] to characterize TD at the 
model level. Work by Izurieta and Bieman [14] compare instances 
of design patterns to model characterizations of patterns (meta-
models) written in RBML [16] used to represent the abstractions 
of design patterns. Basic concepts of TD, such as principal, 
interest and interest probability must be defined at the model-
level as well. 

3.3 Quantification of MDTD 
Quantification of TD in models, on the other hand, needs a 
previous definition of corresponding model-based metrics of 
technical debt. Our position is that researchers should analyze 
and re-visit code-level metrics, but make them relevant at a 
conceptual modeling level. Nugroho et al. [21] identified TD 
through static analysis of code. They used Lines of Code (LOC), 
McCabe’s complexity number and code duplication to estimate 
the amount of expected maintenance for a software artifact. CAST 
[3] also used static analysis of code to identify and quantify TD, 
and the Sonar tool [29] has surfaced as a widely used tool in the 
community that also uses static analysis techniques to produce a 
TD number in terms of a dollar amount that represents the TD 
principal necessary to repay the debt.  
 
From a modeling perspective, quality metrics of conceptual 
models [10] may be studied in order to select which evaluated 
quality criteria fit with the characterization of TD that is proposed.  
It is important to note that quantifying TD at the architectural 
modeling level is not necessarily tied to the Unified Modeling 
Language (UML) [33]; however UML does provide a de-facto 
standard that can be used to measure deviations from structure as 
well as behavior. For example, declarative meta-models of 
structure and behavior have been developed by France et al. [9] 
using the RBML language [16]. The later can be augmented with 
constraints of semantic equivalence to formal methods. 

3.4 Model Evolution and MDTD 
Concerning the evolution of models through different versions, 
researchers will need to describe how the delta from one version 
to the next affects the calculation of MDTD in a model. 
Characterizing modeling tasks that introduce MDTD will help 
understand the nature of these modeling decisions, their likeliness 
and intentionality. Furthermore, it will help predict the type and 
amount of MDTD to be added and its interest probability, from 
changes that modelers introduce into different versions. The 
research community should be able to express every change from 
one version to the next in terms of cost and value over time. 
Possessing the knowledge that longitudinal changes are not 
independent, we argue that the complexity of the probable 
correlation between technical debts added by different changes 
can be more manageable at a high abstraction level. Research and 
case studies on model version management and model refactoring 



techniques will help support and build empirical evidence toward 
understanding complex dependencies which can be addressed 
before coding phases. 
  
To exemplify model evolution we draw from previous work on 
design pattern evolution [14] [13] [12]. Design pattern grime is a 
particular type of MDTD that can be analyzed from a high 
abstraction level. By focusing on design patterns we can identify 
code constructs that conflict with well-formed pattern structures 
or models of said patterns. Grime buildup in design patterns is a 
form of MDTD that does not break the structural integrity of a 
pattern but can reduce system testability and adaptability because 
the structure of the pattern becomes obfuscated as the pattern 
realization and/or its surrounding environment evolves. The 
agreed upon structure of design patterns provide a unique 
opportunity where researchers can compare pattern realizations 
against their intended structure. Schanz et al. [26] developed a 
taxonomy of grime and characterized its nature in design patterns 
to allow for objective quantification. By focusing on design 
patterns (micro-architectures of models), researchers can examine 
well-formed structures against design quality violations much 
more accurately and earlier in the lifecycle of the software.  
 
Design pattern grime is a form of decay that does not break the 
structural integrity of a pattern; instead, it is the buildup of 
unrelated artifacts in classes that play roles in a design pattern 
realization. Unrelated artifacts do not contribute to the intended 
role of a design pattern and increase the MDTD of a system. 
Although many types of grime have been identified, a significant 
contributor to MDTD is modular grime, which is indicated by 
increases in the coupling of the pattern as a whole by tracking the 
number of relationships (generalizations, associations, 
dependencies) pattern classes have with external classes. Figure 3 
shows a visual intuition of grime buildup. In 3(a) we display an 
example of three interacting classes through agreed upon 
relationships. Over time, these classes develop unintended 
relationships (shown in 3(b)) that contribute to the obfuscation of 
the design, thus reducing its quality.  
 
Different types of grime relationships that accumulate over time 
have consequences on the adaptability and the testability of the 
software [13]. The effort required to maintain these relationships 
above and beyond maintaining the same design pattern without 
these relationships represents MDTD interest. This is the 
additional pain incurred on developers or maintainers of the 
design pattern, i.e. the model.  
 
Strasser et al. developed a toolkit [30] that measures the distance 
that a given pattern realization model (reversed engineered from 
the code) is from an ideal implementation of that pattern (a meta-
model described in RBML). The distance represents the TD 
principal. The approach used by this tool calculates technical debt 
holistically, i.e. it yields an overall assessment of the total TD in a 
pattern, but does not point to specific problematic parts of the 
design pattern, or specific remedies applicable to those parts. 

3.5 MDTD Removal 
Debt removal is an area that has not been explored in detail –
whether in the specification phase of the software process. There 
are two aspects that require consideration when addressing debt 
removal: deciding which software artifacts require attention, and 
once a decision is made, refactoring. In a position paper by 
Seaman et al. [27], the authors explain that long term financial 
tradeoffs that affect the quality and maintenance of software 

products are usually not incorporated into the decision making of 
which enhancements or new functionalities need to be tackled 
next. Developers typically tackle issues that have short-term 
immediate impact. Seaman et al. propose four approaches that can 
also be used during the specification phases and modeling of 
software: Simple Cost-Benefit Analysis, Analytic Hierarchy 
Process (AHP), the Portfolio Approach (PA), and Options. Any 
one of these approaches can be equally applied at higher levels of 
abstraction provided researchers have an agreed upon MDTD 
taxonomy (as previously proposed in section 3.1) and a set of 
metrics that help normalize these techniques. A significant body 
of literature on refactoring approaches is available. From single 
view techniques to the application of chains of refactorings to 
improve a model exist; however some of the first research done 
on refactoring models (at high abstraction levels) was performed 
by Sunyé et al. [31] using the Object Constraint Language (OCL). 
 

Class2

x yClass1 Class3

 
 

Fig. 3a. A UML structural diagram of a clean design 
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Fig. 3b. A visual intuition of modular grime buildup. Some relationships 
(shown as thick lines) represent the grime that has accumulated as the 

pattern evolves 

With regards to our example (cf. 3.4) the decision to remove 
grime from a design pattern is dependent on the type of grime 
observed. Studies by Bieman and Wang [1] suggest that the 
removal of coupling dependencies depends on the type of said 
dependency. Relationships between classes are classified in an 
ordinal scale. A low amount of effort (principal) is necessary to 
remove dependency relationships. Associations amount to higher 
principals and generalizations are even more costly.  

The benefits of removing grime can be quantified by observing 
the number of tests cases necessary to test said relationships. By 
effectively removing MDTD represented as relationships we are 
proactively reducing the number of test cases that would be 
necessary to test the software after the mapping phase to an 
implementation. As systems evolve, new relationships develop 
between classes. Added relationships represent added test 
requirements. These relationships may or may not have been 
intended in the original design. More often than not, such 
relationships are the consequence of modular grime buildup. 
Without the necessary updates to the testing suite of such systems, 



the possibility of faults grows. Reducing the number relationships 
identified as MDTD is then significant when improving the 
quality of resultant systems. The formulas to count the number of 
tests were originally proposed by Binder [2] and then expanded by 
Izurieta et al. [13] in the context of implemented systems. The 
number of test cases that are not necessary as a result of paying 
off the principal associated with a particular design pattern 
constitutes a reduction of maintenance and thus interest.  
 
A higher number of dependencies decrease the comprehensibility 
of the model. Even though the design pattern realization remains 
as the system evolves, it becomes obscured thus reducing the 
adaptability of the pattern. The effort (principal) required to 
extract the realization from a design, or to make changes to the 
pattern increases because the developer needs to understand and 
account for the additional couplings that distort the realization of 
the pattern. 

4. DISCUSSION 
Although model-based quality analysis per se is a worthy research 
line on its own, the effects of TD at modeling levels (MDTD) are 
perceptible in final products. For this reason, it is relevant to study 
how the TD that has been identified, classified and measured at 
conceptual levels is transmitted to the implementation level. 
Studies will help researchers conclude if there exists a correlation 
between model-based and code-based TD, or if both are 
absolutely independent of each other, or if there are dependencies 
between them, not necessarily one-to-one, that are worthy of 
analysis, or if modeling tasks introduce a type of debt that is not 
transferred to code. We expect that this line of inquiries will help 
us determine whether TD can be actually added at conceptual 
levels or, if talking about TD in models makes sense.  
 
Another aspect that reinforces the idea of studying TD from a 
model-driven perspective is the fact that many quality issues that 
are used to describe this concept correspond to those that the 
model-driven community has targeted to reduce. For instance, 
from the TD framework proposed by Tom et al. [32], model-
driven development directly influences the following types of 
debt: design and architectural debt (facilitating its analysis 
independently of implementation languages); environmental debt 
(automatic code generation can relieve manually introduced TD), 
documentation debt (model-driven documentation, from models, 
can help preserve traceability), monetary cost (cost associated to 
conceptual models), and amnesty (improving reuse of models in 
different platforms, or core concepts in different domains). 
 
Finding answers to these research questions will open many more 
areas worthy of investigation. For example, What percentage of 
TD is introduced during the modeling phase? or Does MDD help 
address TD earlier? and Does the value added by MDD with 
respect to addressing TD outweigh the current limitations of 
MDD? If the answer is ‘yes’, then software engineers will begin 
adopting MDD. 

5. RELATED WORK 
Although much literature is available on model driven techniques, 
and especially (as of the last five to ten years) technical debt, it is 
impossible to succinctly summarize these contributions in a short 
missive; however, as it relates to this paper, it is important to 
mention the work by Giraldo et al. [11] where the authors confirm 
that there exists no corpus of work on technical debt calculus 
outside implementation phases of development. They discuss the 

importance of calculating technical debt in a model-driven 
context. In their work they used SonarQube [29] on projects 
created on the Eclipse Modeling Framework (EMF) and where 
XML was used as the model specification language. Rather than 
focus on calculating technical debt at the code level, they 
developed rules (codified in XSD –XML Schema Description) 
based on Moody [20] to evaluate debt at the model level. Further, 
as stated in [5] “projects are increasingly adopting model-based 
engineering tools such as SCADE or Simulink to specify the 
functional architecture,” and to generate code automatically from 
models. Although the later is being researched in the context of 
reducing system complexity, clearly metrics developed in this 
space [25] [22] are relevant to quantifying and thus reducing 
MDTD. 

6. CONCLUSION AND FUTURE 
DIRECTIONS 
Adopting a new taxonomy or complementing an existing one with 
concepts that define technical debt at the modeling level during 
software specification is necessary if our goals are to increase the 
adoption of modeling with regular practitioners and to decrease 
the overall amounts of technical debt in software. A taxonomy 
will allow for the identification of new metrics that will allow 
researchers to quantify possible debt before the implementation 
phase. It is our position that reducing MDTD will in turn reduce 
TD in implemented systems thus improving the overall quality of 
a system and reducing maintenance costs. 

Taxonomy of TD at code levels and techniques for its detection, 
quantification, and removal, will form the basis for defining 
corresponding taxonomy and techniques at the conceptual level, 
which can be extended according to the nature of decisions 
adopted in the modeling process. Empirical studies that help 
validate this theoretical framework can be supported through 
MDD tools. For instance, conceptual models can be automatically 
analyzed in order to detect the realization of design constraints or 
patterns, while MDTD metrics measure the amount of associated 
TD principal that a model incurs, described as the distance 
between the actual and ideal realization of the rule.  

Empirical analysis of such implementation could help identify and 
classify those model modifications that add MDTD. A 
complementary functionality could warn developers about the TD 
interest probability of the modifications to be introduced into the 
model. Analogously, some model modifications can help reduce 
MDTD. By means of model-to-model transformation rules, 
refactoring can be implemented to reduce or remove detected 
MDTD. In order to study MDTD introduced in the mapping 
process, we can take advantage of existing code generation tools 
in order to estimate how much TD is added in the model-to-code 
mapping process. A comparative analysis of MDTD in equivalent 
pieces of code, one automatically generated from a model and the 
other written from scratch, can help fully describe the concept of 
MDTD and understand the nature of the TD incurred according to 
the strategy adopted to obtain code. 
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