
Preemptive Management of Model Driven Technical Debt
for Improving Software Quality

Clemente Izurieta
Department of Computer Science
Software Engineering Laboratory
Montana State University, USA

1-406-994-3720
clemente.izurieta@cs.montana.edu

Gonzalo Rojas
Department of Computer Science

Faculty of Engineering
University of Concepción, Chile

56-41-220-4305
gonzalorojas@inf.udec.cl

Isaac Griffith
Department of Computer Science
Software Engineering Laboratory
Montana State University, USA

1-406-994-4780
isaac.griffith@msu.montana.edu

ABSTRACT
Technical debt has been the subject of numerous studies over the
last few years. To date, most of the research has concentrated on
management (detection, quantification, and decision making)
approaches –most performed at code and implementation levels
through various static analysis tools. However, if practitioners are
to adopt model driven techniques, then the management of
technical debt also requires that we address this problem during
the specification and architectural phases. This position paper
discusses several questions that need to be addressed in order to
improve the quality of software architecture by exploring the
management of technical debt during modeling, and suggests
various lines of research that are worthwhile subjects for further
investigation.

Categories and Subject Descriptors

D.2.10 [Software Engineering]: Design – Design Concepts,
Object-oriented design methods; D.2.11 [Software Engineering]:
Software Architectures – patterns.

General Terms
Measurement; Design; Experimentation.

Keywords
Technical debt; model driven development; software quality;
software maintenance; model and architectural quality.

1. INTRODUCTION
Traditional engineering has always used models to capture
simplified abstractions of behavior and structure in the setting of
their domains before building their products. Models are abstract,
yet they can be precise, predictive, comprehensive and cheap [28].
Software development projects are different. Attempts by the
software modeling community have fallen short of their goals and
expectations to gain meaningful adoption by practicing engineers.

Practitioners in industry have not embraced Model Driven
Development (MDD) [6], and when adopted, it is only as a
distinct activity during design, and certainly not treated as a first
class citizen during the Model Driven Engineering (MDE) process
[8]. Software models and their respective implementations have
exhibited large semantic gaps, and although MDD tools are
increasingly improving their usability and features, most of them
lack validation, are cumbersome to use, and changes that occur in
either the model or the code are not reflected in their counterparts
–traceability is too expensive for practitioners. These, among
other problems, have contributed to relegating modeling as a
documentation exercise at best.

Our position is that we must enhance the value added by MDE.
One method to accomplish this goal is by recognizing
disharmonies early in the architecture of a design and generating
clean implementations early. By characterizing and removing
deficiencies before executable components are generated we add
value. By using Technical Debt (TD) [4] as an overarching
metaphor that captures quality deficiency concepts we can
abstract debts to models. To date however, refactoring efforts
defined by Fowler [7], and TD studies have focused on detection,
measurement, and analysis techniques on source code.
Preliminary definitions and taxonomies of TD are based on
decisions made at implementation phases. However, an important
part of the implemented code is obtained from implementation-
independent models through a mapping process, and to our
knowledge there is no body of work that addresses the detection,
quantification, and decision making of TD during the modeling
and mapping activities of the specification phase. By proactively
reducing TD at the architectural modeling level through improved
MDE tools, we can significantly enhance adoption of MDD
because we are addressing potential disharmonies early. We posit
that practitioners do not perceive the added value that conceptual
models provide, which contributes to a lack of adoption of
conceptual modeling as a viable method for improving software
quality. Developers thus sacrifice software quality (whether
intentionally or unintentionally) due to not adopting conceptual
modeling techniques. Our hypothesis is that TD-aware modeling
is a viable tool that can help preserve software quality allowing
practitioners to manage debt in the early stages of the software
lifecycle, independent of programing languages. It is thus critical
for us to seek answers through quantifiable means to three
foundational activities in the software specification phase.

 Q1. Do MDD modeling and mapping (model-to-code
transformation) processes introduce additional debts to the code?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
QoSA’15, May 04–08, 2015, Montreal, QC, Canada
Copyright 2015 ACM 978-1-4503-3470-9/15/05$15.00
http://dx.doi.org/10.1145/2737182.2737193

 Q2. Does the evolution of conceptual models at the
architectural level introduce additional debts? And
 Q3. Which debts need to be removed?

If the answer to either Q1 or Q2 is positive, then our modeling
efforts could be contributing to inadvertent TD [32] – “… whilst
this form of debt is not entered into consciously, it still accrues
interest and needs to be repaid”. By using the TD metaphor, we
can develop taxonomies and measurable quantitative methods that
can reduce the principal and interest (cf. section 2) in models
before mapping such models to executable code. TD principal and
interest metrics as well as treating intentional debts as first class
citizens will help provide recommendations that address the
concerns asked by Q3 and allow for prioritization of debt removal
at the modeling level. Not all debt is strategic debt [17], and some
debt may not necessarily need to be proactively removed because
it may either not have long-term consequences or because the
mapping process from the MDD to the implementation phase may
not reflect such disharmonies. This position paper is organized as
follows: in section 2 we provide an abridged vernacular for MDD
and TD, in section 3 we describe various approaches to important
topics that must be addressed in order to manage TD in models
towards helping researchers address the questions posed in the
introduction. In section 4 we provide a discussion, in section 5 we
describe related work, and conclude with future directions in
section 6.

2. DEFINITIONS
i. Technical Debt Principal – Refers to the cost or effort

(measured monetarily or in time units) necessary to restore a
software artifact back to health.

ii. Technical Debt Interest – A measure of the amount of extra
work (above and beyond the normal maintenance effort) that
is required to restore a software artifact back to health.

iii. Technical Debt Interest Probability – Refers to a time
sensitive measure. The probability that if the interest on a
software artifact is left unpaid, then it will make it (and
possibly other artifacts) more expensive to fix in the future.

iv. Model Driven Development (MDD) – Refers to a
development paradigm that uses models as the main artifact
of design. It is important to distinguish MDD from Model
Driven Architecture (MDA) which is a specific
implementation of MDD by the Object Management Group
(OMG [23] [24]).

v. Model Driven Engineering (MDE) – Refers to an
overarching process that subsumes MDD. MDE also refers to
all other aspects of software engineering beyond modeling
that use models.

vi. Model Driven Technical Debt (MDTD) – Extends the
preliminary definitions of TD by including TD introduced
during model evolution and during the model-to-code
mapping processes (cf. section 3.1).

vii. Model Rot – Refers to the deterioration of the structural
integrity of a model when compared to its meta-model. This
is a corollary to design pattern rot [14].

viii. Model Grime – Refers to model disharmonies that do not
break the structural integrity of the model, but contribute to
the obfuscation of said model. This is a corollary to design
pattern grime [14].

3. APPROACHES
We pose that in order to address the questions introduced in
section 1, the following methods could be followed. To find
answers to Q1 researchers can use existing code based approaches

that measure TD immediately following the MDD modeling and
mapping phases, and to answer Q2 researchers can track the level
of conformance that models have with respect to their meta-
models as a longitudinal function. Deviations can be addressed
and model-refactored [18] before mapping to an executable
model. Deviations from a meta-model come in two forms, model
rot and model grime (defined in section 2). The answer to Q3 will
come in the form of a prioritized list with associated principal and
interest scores. We suggest four approaches borrowed from a
proposal by Seaman [27].

Addressing Q1 will reveal new types of debts, or debts in an
abstract form that will facilitate the development of a new
taxonomy of TD observed at the architectural and modeling level,
and an underlying theory for improving our understanding of
Model Driven Technical Debt (MDTD), while addressing Q2,
which relies on responses to Q1, aims to provide concrete
empirical evidence that additional debts can be introduced through
the evolution of a model and before the implementation phase
thus increasing the TD principal and interest of the overall system.
Addressing Q3 is necessary if we are to increase the adoption of
MDE by practitioners.

3.1 Model Driven Technical Debt (MDTD)
While TD has been recognized as an intrinsic characteristic of
software products, its original description (“not quite right code
which we postpone making it right” [4]) has focused its detection
and analysis on code. MDTD is a term borrowed from TD, but
applied at a higher level of abstraction. We could be justified in
saying “not quite right model which we postpone making it
right.” As previously stated, current definitions and taxonomies of
TD are based on decisions made at implementation phases
without regard to code obtained from implementation-independent
models that occur at the architectural level during the
specification phase. By extending existing taxonomy to the
architectural specification level, we can measure and remove
technical debt before the implementation phase and thus
improving the adoption of MDD.

A conceptual model is an abstract representation of the concepts
that compose one of the views of a software system. It facilitates
the communication among developers and with stakeholders
about the product being developed, abstracting the complexity of
implementation details. From prescriptive plan-driven to agile
proposals, different development methods make use of conceptual
models, supporting the decision making about several aspects of
the product and its development process. These modeling
decisions are later reflected in code. For this reason, the
possibility of adding TD at conceptual level is worthy of attention.

Figure 1 describes a scenario of TD in conceptual models. In this
scenario, a conceptual model evolves in time through different
versions (exemplified in Figure 1, as Mv1 and Mv2). Each version
may incur TD (TD1 and TD2, respectively). From one version to
another, each evolution step is defined by a set of changes, some
of them (Δ2) adding TD (TDx). As a result, the TD of Mv2
corresponds to the accrual of debt from its preceding version (i.e.
Mv1) and the newly introduced debt (TDx) as a consequence of
Δ2. It is important to note that this example depicts a degenerate
case where we assume that a linear function can capture the
changes in technical debt in an evolutionary step. Our position is
that this is significantly more complex, and that the understanding
of a function is dependent on empirical validation and multiple
factors, some of which will be more dominant than others.

∆1

∆2

Mv2Mv1

TD1 + TDx = TD2TD1

X

Fig. 1. Technical Debt introduced in the modeling process

Thus, in a generalized model, TD2 = f (TD1, Δ2). In order to fully
specify this scenario, we need to:

a) Describe and measure TD of a model version,
b) Describe and measure TD introduced by modeling tasks, and
c) Identify and describe these modeling tasks (changes) that

introduce TD.

Another aspect of MDTD concerns the effects of model mapping
and its ripple effects on the implementation. Whether performed
manually, automatically or semi-automatically, we must be aware
that the model-to-code mapping process can add technical debt
as well. Our concept of MDTD also includes the debt incurred by
developers when adopting decisions with respect to which
conceptual elements must be mapped onto code, which mapping
rules should be applied, and the very implementation and
execution of these rules. These decisions can greatly affect the
future maintenance of the product, so the characterization of this
model-to-code TD is necessary. Model-based code-generation
tools can be especially useful for this purpose.

Figure 2 illustrates the degenerate scenario (where we assume
linearity) of model-to-code mapping process, in which the two
versions of a conceptual model from Figure 1 generate (in a
systematic or automatic way) corresponding pieces of code (Cv1
and Cv2) at the implementation level. As a result of the mapping
process, TD from source models (e.g., TD1) is likely to be
transferred to code, but characterized at a lower abstraction level
(TD1’). Furthermore, the mapping process itself may introduce an
additional TD (TDm2c in Figure 2) to the resulting code.

Conceptual Modeling
Level

Implementation
Level

∆1

∆2

Mv2Mv1

TD1 + TDx = TD2TD1

X

Model-to-Code
Mapping Process

Cv1 Cv2

TD1' + TDm2c TD2' + TDm2c
Fig. 2. Technical Debt introduced by the model-to-code

mapping process

3.2 Characterization of MDTD
Characterization of TD in models, just as in code, should be based
in a definition of a model-based taxonomy of technical debt.
Toward this goal, previous code-based taxonomies and detection
techniques may be reused, by analyzing how said taxonomies can
be raised to a conceptual modeling level. For example, the
theoretical framework of TD proposed by Tom et al. [32] can be

extended to include MDTD. Additionally, an initial TD landscape
[15] could be extended to include MDD with a goal to further
understand the gaps and overlaps that may exist at higher levels of
abstraction. From another perspective, previous research on
conceptual model quality [19], and concepts from model
refactoring, such as model smells (redundancies, ambiguities,
inconsistencies, incompleteness, non-adherence to design patterns,
abuse of the modeling notation, etc.) [18] could serve as the basis
for introducing a model-based taxonomy counterpart to existing
code-based approaches to TD, and to establish a reference that can
be used as a blueprint to which researchers can compare model
versions and calculate debt. The work performed by Giraldo et al.
[11] used Moody’s rule definitions [20] to characterize TD at the
model level. Work by Izurieta and Bieman [14] compare instances
of design patterns to model characterizations of patterns (meta-
models) written in RBML [16] used to represent the abstractions
of design patterns. Basic concepts of TD, such as principal,
interest and interest probability must be defined at the model-
level as well.

3.3 Quantification of MDTD
Quantification of TD in models, on the other hand, needs a
previous definition of corresponding model-based metrics of
technical debt. Our position is that researchers should analyze
and re-visit code-level metrics, but make them relevant at a
conceptual modeling level. Nugroho et al. [21] identified TD
through static analysis of code. They used Lines of Code (LOC),
McCabe’s complexity number and code duplication to estimate
the amount of expected maintenance for a software artifact. CAST
[3] also used static analysis of code to identify and quantify TD,
and the Sonar tool [29] has surfaced as a widely used tool in the
community that also uses static analysis techniques to produce a
TD number in terms of a dollar amount that represents the TD
principal necessary to repay the debt.

From a modeling perspective, quality metrics of conceptual
models [10] may be studied in order to select which evaluated
quality criteria fit with the characterization of TD that is proposed.
It is important to note that quantifying TD at the architectural
modeling level is not necessarily tied to the Unified Modeling
Language (UML) [33]; however UML does provide a de-facto
standard that can be used to measure deviations from structure as
well as behavior. For example, declarative meta-models of
structure and behavior have been developed by France et al. [9]
using the RBML language [16]. The later can be augmented with
constraints of semantic equivalence to formal methods.

3.4 Model Evolution and MDTD
Concerning the evolution of models through different versions,
researchers will need to describe how the delta from one version
to the next affects the calculation of MDTD in a model.
Characterizing modeling tasks that introduce MDTD will help
understand the nature of these modeling decisions, their likeliness
and intentionality. Furthermore, it will help predict the type and
amount of MDTD to be added and its interest probability, from
changes that modelers introduce into different versions. The
research community should be able to express every change from
one version to the next in terms of cost and value over time.
Possessing the knowledge that longitudinal changes are not
independent, we argue that the complexity of the probable
correlation between technical debts added by different changes
can be more manageable at a high abstraction level. Research and
case studies on model version management and model refactoring

techniques will help support and build empirical evidence toward
understanding complex dependencies which can be addressed
before coding phases.

To exemplify model evolution we draw from previous work on
design pattern evolution [14] [13] [12]. Design pattern grime is a
particular type of MDTD that can be analyzed from a high
abstraction level. By focusing on design patterns we can identify
code constructs that conflict with well-formed pattern structures
or models of said patterns. Grime buildup in design patterns is a
form of MDTD that does not break the structural integrity of a
pattern but can reduce system testability and adaptability because
the structure of the pattern becomes obfuscated as the pattern
realization and/or its surrounding environment evolves. The
agreed upon structure of design patterns provide a unique
opportunity where researchers can compare pattern realizations
against their intended structure. Schanz et al. [26] developed a
taxonomy of grime and characterized its nature in design patterns
to allow for objective quantification. By focusing on design
patterns (micro-architectures of models), researchers can examine
well-formed structures against design quality violations much
more accurately and earlier in the lifecycle of the software.

Design pattern grime is a form of decay that does not break the
structural integrity of a pattern; instead, it is the buildup of
unrelated artifacts in classes that play roles in a design pattern
realization. Unrelated artifacts do not contribute to the intended
role of a design pattern and increase the MDTD of a system.
Although many types of grime have been identified, a significant
contributor to MDTD is modular grime, which is indicated by
increases in the coupling of the pattern as a whole by tracking the
number of relationships (generalizations, associations,
dependencies) pattern classes have with external classes. Figure 3
shows a visual intuition of grime buildup. In 3(a) we display an
example of three interacting classes through agreed upon
relationships. Over time, these classes develop unintended
relationships (shown in 3(b)) that contribute to the obfuscation of
the design, thus reducing its quality.

Different types of grime relationships that accumulate over time
have consequences on the adaptability and the testability of the
software [13]. The effort required to maintain these relationships
above and beyond maintaining the same design pattern without
these relationships represents MDTD interest. This is the
additional pain incurred on developers or maintainers of the
design pattern, i.e. the model.

Strasser et al. developed a toolkit [30] that measures the distance
that a given pattern realization model (reversed engineered from
the code) is from an ideal implementation of that pattern (a meta-
model described in RBML). The distance represents the TD
principal. The approach used by this tool calculates technical debt
holistically, i.e. it yields an overall assessment of the total TD in a
pattern, but does not point to specific problematic parts of the
design pattern, or specific remedies applicable to those parts.

3.5 MDTD Removal
Debt removal is an area that has not been explored in detail –
whether in the specification phase of the software process. There
are two aspects that require consideration when addressing debt
removal: deciding which software artifacts require attention, and
once a decision is made, refactoring. In a position paper by
Seaman et al. [27], the authors explain that long term financial
tradeoffs that affect the quality and maintenance of software

products are usually not incorporated into the decision making of
which enhancements or new functionalities need to be tackled
next. Developers typically tackle issues that have short-term
immediate impact. Seaman et al. propose four approaches that can
also be used during the specification phases and modeling of
software: Simple Cost-Benefit Analysis, Analytic Hierarchy
Process (AHP), the Portfolio Approach (PA), and Options. Any
one of these approaches can be equally applied at higher levels of
abstraction provided researchers have an agreed upon MDTD
taxonomy (as previously proposed in section 3.1) and a set of
metrics that help normalize these techniques. A significant body
of literature on refactoring approaches is available. From single
view techniques to the application of chains of refactorings to
improve a model exist; however some of the first research done
on refactoring models (at high abstraction levels) was performed
by Sunyé et al. [31] using the Object Constraint Language (OCL).

Class2

x yClass1 Class3

Fig. 3a. A UML structural diagram of a clean design

Class2

x yClass1 Class3
<<uses>>

Fig. 3b. A visual intuition of modular grime buildup. Some relationships
(shown as thick lines) represent the grime that has accumulated as the

pattern evolves

With regards to our example (cf. 3.4) the decision to remove
grime from a design pattern is dependent on the type of grime
observed. Studies by Bieman and Wang [1] suggest that the
removal of coupling dependencies depends on the type of said
dependency. Relationships between classes are classified in an
ordinal scale. A low amount of effort (principal) is necessary to
remove dependency relationships. Associations amount to higher
principals and generalizations are even more costly.

The benefits of removing grime can be quantified by observing
the number of tests cases necessary to test said relationships. By
effectively removing MDTD represented as relationships we are
proactively reducing the number of test cases that would be
necessary to test the software after the mapping phase to an
implementation. As systems evolve, new relationships develop
between classes. Added relationships represent added test
requirements. These relationships may or may not have been
intended in the original design. More often than not, such
relationships are the consequence of modular grime buildup.
Without the necessary updates to the testing suite of such systems,

the possibility of faults grows. Reducing the number relationships
identified as MDTD is then significant when improving the
quality of resultant systems. The formulas to count the number of
tests were originally proposed by Binder [2] and then expanded by
Izurieta et al. [13] in the context of implemented systems. The
number of test cases that are not necessary as a result of paying
off the principal associated with a particular design pattern
constitutes a reduction of maintenance and thus interest.

A higher number of dependencies decrease the comprehensibility
of the model. Even though the design pattern realization remains
as the system evolves, it becomes obscured thus reducing the
adaptability of the pattern. The effort (principal) required to
extract the realization from a design, or to make changes to the
pattern increases because the developer needs to understand and
account for the additional couplings that distort the realization of
the pattern.

4. DISCUSSION
Although model-based quality analysis per se is a worthy research
line on its own, the effects of TD at modeling levels (MDTD) are
perceptible in final products. For this reason, it is relevant to study
how the TD that has been identified, classified and measured at
conceptual levels is transmitted to the implementation level.
Studies will help researchers conclude if there exists a correlation
between model-based and code-based TD, or if both are
absolutely independent of each other, or if there are dependencies
between them, not necessarily one-to-one, that are worthy of
analysis, or if modeling tasks introduce a type of debt that is not
transferred to code. We expect that this line of inquiries will help
us determine whether TD can be actually added at conceptual
levels or, if talking about TD in models makes sense.

Another aspect that reinforces the idea of studying TD from a
model-driven perspective is the fact that many quality issues that
are used to describe this concept correspond to those that the
model-driven community has targeted to reduce. For instance,
from the TD framework proposed by Tom et al. [32], model-
driven development directly influences the following types of
debt: design and architectural debt (facilitating its analysis
independently of implementation languages); environmental debt
(automatic code generation can relieve manually introduced TD),
documentation debt (model-driven documentation, from models,
can help preserve traceability), monetary cost (cost associated to
conceptual models), and amnesty (improving reuse of models in
different platforms, or core concepts in different domains).

Finding answers to these research questions will open many more
areas worthy of investigation. For example, What percentage of
TD is introduced during the modeling phase? or Does MDD help
address TD earlier? and Does the value added by MDD with
respect to addressing TD outweigh the current limitations of
MDD? If the answer is ‘yes’, then software engineers will begin
adopting MDD.

5. RELATED WORK
Although much literature is available on model driven techniques,
and especially (as of the last five to ten years) technical debt, it is
impossible to succinctly summarize these contributions in a short
missive; however, as it relates to this paper, it is important to
mention the work by Giraldo et al. [11] where the authors confirm
that there exists no corpus of work on technical debt calculus
outside implementation phases of development. They discuss the

importance of calculating technical debt in a model-driven
context. In their work they used SonarQube [29] on projects
created on the Eclipse Modeling Framework (EMF) and where
XML was used as the model specification language. Rather than
focus on calculating technical debt at the code level, they
developed rules (codified in XSD –XML Schema Description)
based on Moody [20] to evaluate debt at the model level. Further,
as stated in [5] “projects are increasingly adopting model-based
engineering tools such as SCADE or Simulink to specify the
functional architecture,” and to generate code automatically from
models. Although the later is being researched in the context of
reducing system complexity, clearly metrics developed in this
space [25] [22] are relevant to quantifying and thus reducing
MDTD.

6. CONCLUSION AND FUTURE
DIRECTIONS
Adopting a new taxonomy or complementing an existing one with
concepts that define technical debt at the modeling level during
software specification is necessary if our goals are to increase the
adoption of modeling with regular practitioners and to decrease
the overall amounts of technical debt in software. A taxonomy
will allow for the identification of new metrics that will allow
researchers to quantify possible debt before the implementation
phase. It is our position that reducing MDTD will in turn reduce
TD in implemented systems thus improving the overall quality of
a system and reducing maintenance costs.

Taxonomy of TD at code levels and techniques for its detection,
quantification, and removal, will form the basis for defining
corresponding taxonomy and techniques at the conceptual level,
which can be extended according to the nature of decisions
adopted in the modeling process. Empirical studies that help
validate this theoretical framework can be supported through
MDD tools. For instance, conceptual models can be automatically
analyzed in order to detect the realization of design constraints or
patterns, while MDTD metrics measure the amount of associated
TD principal that a model incurs, described as the distance
between the actual and ideal realization of the rule.

Empirical analysis of such implementation could help identify and
classify those model modifications that add MDTD. A
complementary functionality could warn developers about the TD
interest probability of the modifications to be introduced into the
model. Analogously, some model modifications can help reduce
MDTD. By means of model-to-model transformation rules,
refactoring can be implemented to reduce or remove detected
MDTD. In order to study MDTD introduced in the mapping
process, we can take advantage of existing code generation tools
in order to estimate how much TD is added in the model-to-code
mapping process. A comparative analysis of MDTD in equivalent
pieces of code, one automatically generated from a model and the
other written from scratch, can help fully describe the concept of
MDTD and understand the nature of the TD incurred according to
the strategy adopted to obtain code.

7. REFERENCES
[1] J. M. Bieman and H. Wang, “Design pattern coupling,

change proneness, and change coupling: a pilot study,”
Technical Report. Colorado State University, 2006.

[2] R. Binder, Testing Object Oriented Systems: Models,
Patterns, and Tools. Addison-Wesley Publishers, 2000.

[3] CAST, “Cast worldwide application software quality study:
Summary of key findings,” Technical Report, Available:

http://www.castsoftware.com/resources/resource/cast-
research-labs/cast-worldwide-application-software-quality-
study-2010/, 2010.

[4] W. Cunningham, “The WyCash portfolio management
system,” in Proceedings on Object-oriented programming
systems, languages, and applications (Addendum) (OOPSLA
'92), ACM, New York, NY, USA, pp. 29-30, 1992.

[5] J. Delange. Blog: Managing Model Complexity.
http://blog.sei.cmu.edu/post.cfm/managing-model-
complexity. Software Engineering Institute (SEI), Carnegie
Mellon University. Accessed 12/29/2014.

[6] B. Dobing and J. Parsons, “How UML is used,” Commun.
ACM, 49, 5, pp.109-113, May 2006

[7] M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley. 1999.

[8] A. Forward and T. C. Lethbridge, “Problems and
opportunities for model-centric versus code-centric
development: A Survey of Software Professionals,” in
Proceedings of the International Workshop on Models in
Software Engineering (MiSE’08)@ICSE’08, pages 27-32,
New York, 2008.

[9] R. B. France, D. K. Kim, E. Song, and S. Ghosh. 2002.
Patterns as Precise Characterizations of Designs. Technical
Report. Colorado State University.

[10] M. Genero, M. Piattini, and C. Calero. Metrics for software
conceptual models. London: Imperial College Press, 2005.

[11] F. D. Giraldo, S. España, M. A. Pineda, W. J. Giraldo, O.
Pastor., “Integrating Technical Debt into MDE,” 26th
International Conference on Advanced Information Systems
Engineering, Pre-proceedings CAISE ’14 Forum, 16-20
June, Greece.

[12] C. Izurieta and J. Bieman, “How software designs decay: A
pilot study of pattern evolution,” in Proceedings of the First
Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), Madrid, Spain, pp. 449-451,
September 2007.

[13] C. Izurieta and J. Bieman, “Testing consequences of grime
buildup in object oriented design patterns,” in Proceedings of
the 1st International Conference on Software Testing,
Verification, and Validation (ICST 2008), Lillehammer,
Norway, pp. 171-179, April, 2008.

[14] C. Izurieta C., and J. Bieman, “A multiple case study of
design pattern decay, grime, and rot in evolving software
systems,” Software Quality Journal, vol.21, pp. 1-35, June
2013.

[15] C. Izurieta, A. Vetro, N. Zazworka, Y. Cai, C. Seaman, and
F. Shull, “Organizing the technical debt landscape,” in
Proceedings of the Third International Workshop on
Managing Technical Debt (MTD’12), Zurich, Switzerland,
pp. 23-26, June 2012.

[16] D. K. Kim, “A meta-modeling approach to specifying
patterns.” Colorado State University PhD Dissertation, June
21, 2004.

[17] S. McConnell, “Technical debt,” in: 10x Software
Development, Available from:
http://blogs.construx.com/blogs/stevemcc/archive/2007/
11/01/technical-debt-2.aspx (Online), 2007.

[18] T. Mens, Taentzer, G., and Müller, D., "Model-Driven
Software Refactoring," in Model-Driven Software
Development: Integrating Quality Assurance, IGI Global,
pp.170-203, 2009.

[19] D.L. Moody, G. Sindre, T. Brasethvik, and A. Sølvberg,
"Evaluating the quality of information models: empirical
testing of a conceptual model quality framework," in
Proceedings of the 25th International Conference on
Software Engineering. IEEE Computer Society, Portland,
OR, USA, pp. 295-305, May 2003.

[20] D. L. Moody. “The physics of notations: Toward a scientifc
basis for constructing visual notations in software
engineering,” IEEE Transactions on Software Engineering,
35(6):756-779, 2009.

[21] A. Nugroho, J. Visser, T. Kuipers, “An empirical model of
technical debt and interest,” in Proceedings of the Second
International Workshop on Managing Technical Debt
(MTD’11), New York, NY, USA, pp. 1-8, May 2011.

[22] M. Olszewska. “Simulink-Specific Design Quality Metrics,”
TUCS Technical Reports 1002, Turku Centre for Computer
Science, 2011.

[23] OMG, Object Management Group: Meta Object Facility
(MOF) 2.0 Core Specification. Final Adopted Specification
pct/03-10-04 edn. from http://www.omg.org/docs/ptc/03-10-
04.pdf, 2003.

[24] OMG, Object Managament Group: MDA Guide Version
1.0.1. Document omg/03-06-01 edn from
http://www.omg.org/docs/omg/03-06-01.pdf, 2003.

[25] J. Prabhu. “Complexity Analysis of Simulink Models to
improve the Quality of Outsourcing in an Automotive
Company,” Manuscript, August 2010.
http://alexandria.tue.nl/extra1/afstversl/wsk-i/prabhu2010.pdf

[26] T. Schanz and C. Izurieta, “Object oriented design pattern
decay: a taxonomy,” in Proceedings of the 4th ACM-IEEE
International Symposium on Empirical Software Engineering
and Measurement (ESEM 2010), Bolzano-Bozen, Italy, pp.
1-8, September, 2010.

[27] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka, F.
Shull, and A. Vetrò, “Using technical debt data in decision
making: potential decision approaches,” in Proceedings of
the Third International Workshop on Managing Technical
Debt (MTD’12), Zurich, Switzerland, pp.45-48, June 2012.

[28] B. Selic, “The pragmatics of model-driven development,”
IEEE Software, vol.20, pp.19-25, September-October 2003.

[29] Sonar. Available online: http://www.sonarsource.org/
[30] S. Strasser, C. Frederickson, K. Fenger, C. Izurieta, “An

automated software tool for validating design patterns,”
ISCA 24th International Conference on Computer
Applications in Industry and Engineering. CAINE ’11,
Honolulu, HI, USA, November 2011.

[31] G. Sunyé, D. Pollet, Y. L. Traon, J. M. Jézéquel,
“Refactoring UML Models. UML ’01, LNCS, vol. 2185, pp.
134-148. Springer (2001).

[32] E. Tom, A. Aybuke, and R. Vidgen, “An exploration of
technical debt,” The Journal of Systems and Software 86, pp.
1498-1516. 2013.

[33] Unified Modeling Language (UML). Available online:
http://www.uml.org

