
A SEARCH ENGINE THAT LEARNS

Jeffrey K Elser, John Paxton
Montana State University - Bozeman

Computer Science Department
Bozeman, MT USA

elser@cs.montana.edu, paxton@cs.montana.edu

ABSTRACT

Tuning a local Web site to generate better local search
results is a time consuming and tedious process. In this
paper, we describe a technique that can help to automate
this process. Specifically, when a genetic algorithm is
applied to a local search engine’s parameters, the
performance of the local search engine can be improved.
Once good values for the search engine have been
learned, it is easy to identify local Web pages that are
candidates for further improvement.

KEY WORDS

Genetic Algorithms, Search Engine Enhancement

1. Introduction

The Customer Relationship Management (CRM) software
developed by RightNow Technologies includes many
features designed to streamline customer interaction. One
function of RightNow's CRM suite is a knowledge base
where customers may ask questions that are answered by
the software product rather than by company employees.
The knowledge base works through spidering and
indexing of a company's Web site, allowing pre-existing
information to be utilized. [1, 2, 3]

A fairly standard approach for spidering and indexing the
Web site is used. When a company installs RightNow's
software, a service tech performs the configuration and
spiders the company's Web site. Initially, a list is built
containing the location of words found on the page.
These words can be found in the normal text body, HTML
tags (e.g. H1), meta-tags and even URLs. Finally an
index is created from this list using the software's system
of weighting.

Unfortunately, a company's Web pages are often not
optimized for local searching. For example a company
might place its name in the description meta-tag of every
page on its Web site in order to rank its pages higher than
its competitors’ pages on Internet-wide search engine
rankings. However, this homogeneous local structure
might reduce a local search engine's ability to differentiate
between the content of local pages.

Because a company is in control of both its Web site and
its local search engine, it should be possible to have its
local search engine perform more accurately. As it may
be very labor intensive for the company to manually
update and optimize each Web page, a more reasonable
request is to ask the local webmaster to alter a small
subset of the Web site based on explicit given
instructions.

This problem can be approached in two ways. First, the
local search engine can be tuned using an automated
process. Second, changes to the Web site that cannot be
made through automation can then be suggested. The
focus of this paper is on the first of these two approaches.
The remainder of this paper is organized as follows.
Section 2 presents relevant background on search engines
and genetic algorithms. Section 3 describes a method for
automatically optimizing a local Web site. Section 4
presents some preliminary results. Section 5 summarizes
the findings and presents some ideas for future research.

2. Background

2.1 Search Engine Background

The search engine used in RightNow’s CRM product
spiders and indexes a website through common spidering
methods. The important feature of this search engine is
the system of weights used to create the index. These
weights act as multiplying factors when the score of a
search term's occurrence in a document is calculated. For
example, if the search term is found in the title section of
a Web page, and the title weight is 100, then the score of
that term is multiplied by 100 and added to the
document's score. The score for each document is thus
the sum of the search term occurrences multiplied by their
weights. The result of a search lists the pages based on
their final scores in decreasing order. The first column in
Table 1 contains a list of some of the standard weights
and the second column contains their default, pre-
optimized values. The third column of Table 1 will be
discussed later.

A majority of the weight identifiers in Table 1 refer to
simple HTML or Meta tags such as <title> or <h1>.

487-120 316

mailto:elser@cs.montana.edu
mailto:paxton@cs.montana.edu
debbie

However the meaning of a few of the tags may not be
obvious and their functions will be described below.

The meta-description identifier refers to a search engine
specific Meta tag. This tag is only understandable to
RightNow Technologies’ search engine. It is not
considered by most Internet-wide search engines and does
not affect the page’s appearance in a browser.

The multi-match weight is applied when more than one
keyword occurs in a search. For example, if the search
terms are “rocking” and “chair” and both are found in a
document, the multi-match weight is applied to the
document. This weight has no effect when the Boolean
operator joining the two words is AND instead of OR.

The backlink weight is applied as a multiplier to the ratio
of the number of links coming into a page versus the
number of links going out. A page that has many
outgoing links (such as a table of contents) will have its
score reduced. A page that has many incoming links
(such as one that contains important information) will
have its score enhanced. When a Web site has a common
tree-like structure, a high backlink weight causes leaf
node pages to be boosted in the returned results.

Weight Identifier Default Value First Test Case
Results

backlink 1000.0 510.0
description 150.0 980.0
keywords 100.0 66.0
title 100.0 180.0
meta-description 50.0 920.0
heading 1 5.0 130.0
heading 2 4.0 340.0
heading 3 3.0 640.0
heading 4 1.0 720.0
heading 5 1.0 430.0
author 1.0 440.0
multi-match 1.0 170.0
text 1.0 0.0
url text 1.0 540.0
date 0.35 140.0
heading 6 0.0 0.0

Table 1

2.2 Genetic Algorithm Background

A genetic algorithm (GA) is used to optimize the search
engine parameters to achieve better rankings within the
local Web site automatically. Rather than writing a GA
from scratch, GAlib’s prewritten functions were utilized
[4]. GAlib is a collection of genetic algorithm functions
written in C++.

Goldberg’s Simple GA [5] is used in the initial
experiments. The main elements of the simple GA are

standard mutation, standard crossover, elitism, and non-
overlapping populations. The fitness function will be
explained in Section 3.

3. Approach

To produce better search engine rankings, the feature
weights in the search engine’s configuration file need to
be improved.

Initially the Webmaster must supply training data. He or
she must identify the ranked pages that should result from
a particular search query. This information is stored in a
batch file. It is possible that user input can be used to
create this batch file dynamically [6, 7]. This is discussed
further in the conclusions and future directions section.

The Web sites used for this experiment were created from
11 newsgroup articles. These articles were selected from
a 20,000 article data set hosted on the UCI Knowledge
Discovery in Databases Archive [8].

The articles were chosen for their structure and word
count. Larger documents tend to work better in a search
engine simply because they are more likely to contain
multiple instances of the search term. The 11 selected
articles were formatted by hand to include HTML
formatting tags and relevant Meta tags.

The GA begins by creating a random population of
genomes. Two different population sizes, 1000 and
10000 were tested but the results were almost identical.
All the data in this paper was collected from tests using
populations of size 1000. For the problem at hand, the
genome contains 16 real numbers ranging from 0.0 to
1000.0. Each number corresponds to one of the weights
shown in Table 1. Random initial values is a commonly
used technique for reducing the number of generations
required for a genetic algorithm to converge upon an
acceptable result. There is evidence that the quality of the
random number generator affects performance as well,
but for these experiments, only GAlib’s built in random
number generator was used [9, 10, 11]. In the future,
experiments will be run using different random number
generators.

The GA executes for a predetermined number of
generations. Elitism is turned on to ensure that the fittest
individual is retained from one generation to the next.
The probability of mutation is set to 0.01 and the
probability of crossover is set to 0.6.

A fitness function is required for all GAs. The fitness
function for this problem is a distance measure between
the top ten actual rankings of the Web pages and the top
ten desired rankings from the batch file (if there are that
many). Equation 1 defines the fitness function where D is
the absolute value of the difference between a page’s
actual ranking and its desired ranking. For example if a
page’s actual ranking is 5 and its desired ranking is 2,

317

then the distance is 3. In the batch file, if there are fewer
than 10 desired rankings, then the unspecified positions
are considered to match perfectly.

Equation (1)

There are two special cases for the fitness function. First,
if the page is not included in the top ten results in the
actual rankings, but it should be according to the desired
rankings, then D is set to 100 for that page. Second, if the
actual ranking matches the desired ranking, then D is set
to -10 for that page. This defines the largest possible
distance to be 1000 and the smallest distance as -100.
Substituting those values into the fitness function, the
largest distance gives a fitness value of 1/1101 or 0.0009,
and the smallest distance gives a perfect fitness value of 1.

4. Preliminary Results

Twelve tests were performed on the 11 Web pages. The
search query “introduction” was used throughout the tests.
Several of the test pages were large introductory texts and
FAQs. Each of these articles contained several
occurrences of the query term “introduction” in a variety
of HTML and Meta tags. The other pages were argument
style posts that contained few if any occurrences of the
query term.

The 12 tests were designed so that each one has a
different desired ranking. The first test’s desired ranking
was realistic in the sense that a real Webmaster chose it.
The desired results for the other 11 tests were picked at
random.

The tests performed show that some improvement in
ranking is possible, although not guaranteed. In four of
the twelve tests, including the realistic one, perfect
rankings were achieved. In four other tests, the rankings
were improved as the search engine weights were
modified by the genetic algorithm. In the remaining four
tests, no improvement was attained beyond the initial
random weighting. The average distance between the
actual and the desired ranking for these last four tests was
5, which as shown in Figure 1, is a common initial
distance. This eliminates lucky initial ordering as a factor
for lack of improvement.

While 100% accuracy was achieved in some test cases,
this level of accuracy was not always possible. The main
reason for the GA to fail to achieve perfect rankings lies
in not allowing negative weighting. For example,
maintaining other factors constant, if one page has three
occurrences of a keyword in its body text, while the
another page has only one occurrence of the keyword in
its body text, then no value for the body text weight will

cause the second page to be ranked ahead of the first
page. The more pages that appear in the training file, the
higher the chances are that there will be no perfect set of
search engine weights.

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 25 50 75 100

Generation Number

D
is

ta
nc

e

Figure 1: The actual distance between real and desired

results plotted over the number of generations.

In Figure 2, the average fitness values from the 12 tests
are plotted against the number of generations. It is helpful
to review Equation 1 before proceeding. The possible
range of values from the fitness function is from 1 to
1/1101. However, it is necessary to realize that after
excluding the perfect value of 1, the next best fitness
value possible is 1/23 or 0.0435. The score 1/23 comes
from 8 perfect matches (d is -10 for each) and the two
remaining pages being out of order by just one position (d
is 1 for each). For example, if the desired ranking was {5,
2, 1, 3, 4, 6, 7, 8, 9, 0}, and the actual ranking was {5, 2,
3, 1, 4, 6, 7, 8, 9, 0}, then the score would be 1/23. The
steps in the graph show where individual tests jump from
1/23 to the optimal solution of 1. By the 200th generation,
four out of 12 of the tests achieved the desired ranking.
These results might be a feature of the small search space.
In the future, larger data sets should be studied.

0

0.1

0.2

0.3

0.4

0 25 50 75 100 125 150 175

Generation Number

Fi
tn

es
s

Va
lu

e

Figure 2: The average fitness values from 12 test cases
plotted over the number of generations.

318

The dashed line in Figure 2 represents the performance
using the default weights. As mentioned briefly above,
the default weights were chosen based on a combination
of intuition and trial and error. Interestingly, using the
default weights was not an optimal solution for any of the
12 tests, and the distance from the desired ranking for the
one realistic test was 8. While these default weights may
make sense when considering which HTML and Meta
tags are important, it is apparent that better configurations
are often possible.

One possible argument to support these lower results of
the default weights is to hypothesize that the web pages
being tested are not properly tagged. If this is assumed
true, using standard search engine optimization techniques
could help the pages rank better. [12, 13] Unfortunately
that position meets with a lot of resistance from real life
Webmasters. As discussed in the introduction, improving
local search results automatically is one main goal of this
research. Therefore since these test Web pages are
representative ones, they are relevant and valid for this
research despite apparent shortcomings in design and
content.

The fitness function is not a smooth one (consider the -10
bonus for a perfect match and the +100 penalty for a
desired page not being listed in the top ten). While Figure
1 shows the average solution improving over time, it is
difficult to see optimization occurring because the fitness
values change non-linearly.

In Figure 1, the average actual distance is plotted against
the number of generations using a simplified fitness
function. The new fitness function does not reward
perfect matches, nor does it add a penalty for desired
results that do not appear in the top ten actual results.

Using the simplified fitness function, improvement still
occurs. However, only one test now achieved the optimal
solution. To allow for a better comparison between the
original fitness function and the simplified one, consider
that the final average distance in Figure 2 (approximated
from the final average fitness value) is approximately 2.
Comparing that to the final average distance of
approximately 3 in Figure 1, it is evident that the simpler
function is not able to match the performance of the
original equation. However, even the simpler fitness
function outperforms the default weights, as depicted by
the dashed line in Figure 1.

5. Conclusions and Future Directions

A genetic algorithm is not a magic bullet that can
configure a search engine to rank pages perfectly.
However, as this work shows, the performance of a local
search engine can be improved. The level of
improvement attainable remains a future research
question.

The fitness function for this GA was not very smooth
because of the addition of the perfect result reward of -10
and the missing result penalty of 100. That function
performed better than using just the distance and ignoring
the two special cases, but it seems likely that a smoother
function that includes the special cases would perform
even better. Therefore the first area to look into will be
developing a smoother fitness function.

Multi-objective genetic algorithms are a possible research
path to optimize the search engine weights for larger,
more complex page sets [14].

For pages that are still ranked incorrectly after the search
engine is optimized by a GA, weights in the configuration
file can be used to make further recommendations for
improvement. For example, if the description weight is
large and the misclassified page has no description, it
seems appropriate to recommend writing a description for
the page.

Another way to deal with a misclassified page is to
automatically generate a value to use in one of the search
engine specific meta-tags. This allows artificial content to
be added to a page without altering its visible contents. In
general, altering the search engine specific meta-tags
shouldn’t affect the page’s ranking with other Internet-
wide search engines [15]. Therefore, to deal with
problem pages, the program could add artificial content to
Web site meta-tags as a temporary solution, and then
make recommendations for additional content to be added
later by the Webmaster as time allows.

The search engine configuration file weights can also be
used to make design change suggestions. For example, if
the GA finds that the title tag’s weight should be very
small, a recommendation could be made to use title tags
more accurately. (In general, the title of a web page is
considered to be a very important aspect by many
Internet-wide search engines.) In this case, the small
weight of the title tag likely indicates that the title tags are
either written poorly or missing altogether.

Because creating a batch file of desired rankings is
tedious work for the Webmaster, it is worthwhile to
explore alternate methods of discovering that information.
As was mentioned in the approach section, it may be
possible to unobtrusively collect information from users
about which pages should be ranked higher or lower [6,
7]. When a user conducts a search, statistics can be kept
concerning what results the user chooses. The user’s final
choice could be given special attention since it may be
assumed that the user has found the information they were
looking for. However, caution is required when using
implicit user data because the statistics can be easily
misinterpreted. For example, if a search engine returns 10
results per page, it is likely that those 10 results will be
clicked more often largely because they are on the first
page, and not because they are more relevant.

319

More research is required in the area of implicit user
feedback before it can be relied upon for the initial
training data. A more reasonable approach might be to
bootstrap the search engine with the batch file created by
the Webmaster, and then later refine the search engine by
cautiously adding the data from implicit user feedback.
This will be an interesting and challenging area to study
when this research is put into use by real world search
engine and actual implicit feedback can be gathered.

Thus, although some initial progress has been made,
much research remains. We are excited to continue
exploring this problem.

6. Acknowledgements

We would like to thank RightNow Technologies and the
RightNow applied research team for funding the research
grant that made this work possible. We also appreciate
being provided with access to relevant software.

7. References

1. RightNow Technologies, On Demand Customer
Relationship Management Software,
http://www.rightnow.com

2. Durbin, S., Warner, D., Richter, N. & Gedeon, Z.
Management for Web-Based Customer Service.
Organizational Data Mining: Leveraging Enterprise Data
Resources for Optimal Performance. Edited by Nemati
and Barko. Idea Group Inc., 92-108, 2004.

3. Durbin, S., Warner, D., Richter, N. & Gedeon, Z.
Information Self-Service with a Knowledge Base that
Learns. AI Magazine, 23(4), 41-49, Winter 2002.

4. GALIB, A C++ Library of Genetic Algorithm
Components, http://lancet.mit.edu/ga

5. Goldberg, D. E., Genetic Algorithms in Search,
Optimization & Machine Learning, Addison-Wesley,
1989.

6. Qi, H., Hartono, P., Suzuki, K., Hashimoto, S., Sound
database retrieved by sound, Acoustical Science and
Technology, Vol. 23, No. 6, pp. 293-300, 2002.

7. Boyan, J., Freitag, D., Joachims, T., A Machine
Learning Architecture for Optimizing Web Search
Engines. Proceedings of the AAAI Workshop on Internet
Based Information Systems, 1996.

8. Hettich, S. and Bay, S. D. The UCI KDD Archive.
University of California - Irvine, Department of
Information and Computer Science. http://kdd.ics.uci.edu

9. Daida, J., Ross, S., McClain, J., Ampy, D., & Holczer,
M. Challenges with Verification, Repeatability, and
Meaningful Comparisons in Genetic Programming.
Genetic Programming 97. San Francisco, CA: Morgan
Kaufmann Publishers, 64-69, 1997.

10. Daida, J. M., Ampy, D. S., Ratanasavetavadhana, M.,
Li, H., & Chaudhri, O. A.. Challenges with Verication,
Repeatability, and Meaningful Comparison in Genetic
Programming: Gibson's Magic. Proceedings of the
Genetic and Evolutionary Computation Conference. San
Francisco, CA: Morgan Kaufmann Publishers, 1851-1858
(Volume 2), 1999.

11. Meysenburg, M., & Foster, J. Random Generator
Quality and GP Performance. Proceedings of the Genetic
and Evolutionary Computation Conference. San
Francisco, CA: Morgan Kaufmann Publishers, 1121-1126
(Volume 2), 1999.

12. Thurow, S., Search Engine Visibility, New Riders,
2003.

13. Kent, P., Search Engine Optimization for Dummies,
Wiley, 2004.

14. Fonseca, C.M., Fleming, P.J., Genetic algorithms for
multi-objective optimization: Formulation, discussion and
generalization. Genetic algorithms: Proceedings of the
Fifth International Conference, Morgan Kaufmann, San
Mateo, CA, 141-153, 1993.

15. Sullivan, D., How To Use HTML Meta Tags, Search
Engine Watch. http://www.searchenginewatch.com,
December 5, 2002.

320

http://www.rightnow.com/
http://lancet.mit.edu/ga
http://kdd.ics.uci.edu/
http://www.searchenginewatch.com/

	ABSTRACT
	KEY WORDS

